
ETH ZURICH, DEPARTMENT INFORMATIK

Partially and Fully Persistent AVL trees

Shengyu Huang

13 November 2018

1 INTRODUCTION

In most of the data structures we see, if we do modifications, we will not be
able to trace back the old versions and have only access to the latest version. We
call such data structures ephemeral. But think about text and file editing, we can
redo and undo things because we have a copy of the working history. So being
able to go back in time could be desirable for a data structure. Persistent data
structures are about maintaining history. If we take the initial configuration of a
data structure as version zero (which we assume to be empty here), an operation
that changes the state of this data structure generates version one. That is, if we
index all the modifications, a modification operation i produces version i.

If we can only view the working history but have no way to change the
data structure on the old versions, we call it partial persistence. That is, a partially
persistent data structure supports access to all versions, but only the newest version
can be modified.

If the data structure furthermore allows us to act on the old versions, we call
it a fully persistent data structure. Fully persistent data structures allow us to both
access and update all available versions.

By visualizing the working history of persistent data structures, we can gain some
useful intuition. Versions in partially persistent data structures can be represented
by a path, while versions in fully persistent data structures can be seen as forming
a tree.

In this report, we will introduce two generic techniques to make linked struc-
tures persistent at small cost in time and space. First, we need to formally define

1



Ver 1 Ver 2 Ver 3 Ver 4

(a) Partial persistence forms a ver-
sion path

Ver 1

Ver 5 Ver 3

Ver 4

Ver 2

(b) Full persistence forms a version
tree

Figure 1.1: Visualization of versions in persistent data structures

a few terms that will run through the whole report.

Definition. A linked data structure is a finite collection of nodes, each containing a
fixed number of named fields. Each field is either an information field that holds
a single piece of information of a specified type, or a pointer field that holds a
pointer to a node or the special value nil indicating no node.

Stacks, queues, and trees are common linked structures, while arrays are not.
We can think of a linked structure as a labeled directed graph where the out-degree
of vertices is upper bounded. In addition, access to a linked structure is provided
by a fixed number of named access pointers indicating nodes of the structure, called
entry nodes. In the case of binary search trees, we have only one access pointer,
the root pointer, i.e. the pointer to the root of the tree, and the root being the
only entry node.

We are going to use AVL trees as our example, but the techniques we discuss
are applicable to all linked data structures. An AVL tree is a binary tree where the
height difference of two child subtrees is no more than one for all nodes. We store
a balance factor in each node to help us maintain balance of the tree.

Definition. In a binary tree, the balance factor of a node N is defined to be the
height difference of its two child subtrees, i.e.

BalanceFactor(N) := Height(RightSubtree(N)) - Height(LeftSubtree(N))

We consider three kinds of operations for AVL trees: searching, insertion, and
deletion. We call insertion and deletion update operations. Searching in an AVL tree
can be done the same way as in a normal binary search tree. Insertion and deletion
in an AVL tree consists of two stages: the first stage is the same as doing insertion
or deletion in a binary search tree. The second stage is rebalancing, which could

2



change the pointer fields and balance factors of nodes when performing single or
double rotation.

We can think of a persistent AVL tree as a linked structure with each version
of the ephemeral AVL tree embedded in it, so that each searching, insertion, or
deletion in a version of the ephemeral AVL tree can be simulated (ideally in
constant time) in the corresponding part of the persistent AVL tree. The problem
we want to solve is to maintain the correct correspondence between the persistent
AVL tree and the ephemeral AVL tree.

2 FAT NODE METHOD

2.1 PARTIAL PERSISTENCE

Let n be the number of nodes in the AVL tree in a certain version. Let m be
the number of update operations. A very naive way to achieve partial persistence
is to store every version entirely after each update. This costs Ω(n) time and
space per update. An alternative method is to only store the sequence of update
operations, and rebuild the ephemeral data structure of a certain version from
scratch for every query. Let m be the number of update operations. This method
takes O(m) space, but each access to version i takes Ω(i ) time even if every single
update takes only O(1) time.

Instead of storing the update operations in a separate sequence, we let each
node keep track of its own history. Updates on a single node could make the
history information of this node arbitrarily large, hence the name "fat node".

To be more precise, each fat node in the persistent AVL tree will contain the
same fields as a node in the ephemeral structure (a key, a balance factor and two
pointers), along with space for an arbitrary number of extra field values. Each extra
field value has an associated field name (key, left, right, or balance) and a version
stamp.

We simulate ephemeral an update operation as follows. Consider the insertions
of nodes x, y, z consecutively. This sequence of update operations produces three
versions of the AVL tree. The persistent AVL tree using fat node method is shown
in Figure 2.1.

Insert x is just setting the root pointer to x in version one. In addition, we
need to initialize the pointers of x as nil and the balance factor as 0. When we
insert y to x's right pointer, we store (right, y, v2) and (balance, 1, v2) to
node x. However, we can actually overwrite x.right and x.balance in version one
without worrying losing any information. Because the initial values of two pointers
of a node are always nil and the initial value of balance factor is always 0. So
if we want to query the field value of a node in some version, but this version
is smaller than the smallest version stamp in the queried field, we immediately

3



know the value is nil or 0. In this case, we know x.right in version one is nil
because the smallest version stamp in x.right is 2.

Similarly, when we insert z to y.right, we store (right, z, v3) into node
y. Now node x has a balance factor of 2 after the insertion. By looking at its
child node y’s balance factor, i.e. 1, we know we only need to perform a single
left rotation.

After this rotation, fields y.left, x.right, x.balance, y.balance are changed.
If a node already has a field value with version stamp 3, we overwrite it with the
value in the final state. This is because we do not need the intermediate values
during rebalancing. If some field value is changed but has a version stamp smaller
than 3, we store this new information in the node. Here, we store (right, nil,
v3), (left, x, v3) to node x and y respectively.

y

x z

33
2

1-2

3

3

Figure 2.1: Persistent representation of an AVL tree after insertions of x, y, z using
fat node method. Pointers are labeled with their version stamps. Red
edges are right pointers and blue edges are left pointers.

In general, we need store (field name, field value, version stamp) when
a field value is changed, and we also need an additional structure to help us keep
track of root pointers of all versions in order to initialize the access into a version.

Simulating searching in the persistent AVL tree is as follows. Starting from the
root with version stamp i, we compare the key with the one in current node we
are visiting. If the search key is larger than the key of the current node, we look
for all right pointers in the corresponding fat node by going down with the one
that has maximum version stamp no greater than i. For example, if we want to
know the value of y.left in version 2, we go from the root pointer v2 and follow
x.right with the version stamp 2. The smallest version stamp of y.left is 3,
which is larger than 2. We can infer that y.left must be nil in version 2.

2.1.1 SPACE AND TIME ANALYSIS

The worst case for deletion in an AVL tree can cause rotations to be made

4



all the way up to the root. That is, we might need to do O(logn) rotations to
rebalance the tree. In this situation, we need additional O(1) space to store the
changed states in each node and the root pointer per update step. Because a single
or double rotation(s) only affects a constant number of fields to be updated, and
no more than O(logn) will be made because the longest path in an AVL tree is
upper bounded. The total additional space cost per deletion is therefore O(logn).

The case for insertion is simpler. Because insertion in AVL trees can only induce
a constant number of updates, the additional space cost per insertion is O(1).

As for searching, in order to know the field value of some node in a particular
version i, we need to compare it with the version stamps stored in each fat node
during navigation. If we use balanced search trees to store the version stamps of
each fat node, we need O(logm) time to find the correct version in one single fat
node. In addition, we need to find the root pointer i before navigating through
the tree. If we store the root pointers in an array, we will have the worst-case
time cost of O(m) or amortized O(1) because we need to expand the array at
some point. If we store root pointers in a balanced binary search tree, the time
complexity is O(logm).

Since the height of an AVL tree is at most O(logn), the total time for search-
ing is O(logm + logm logn) = O(logm logn). Similarly, insertion and deletion take
O(logm logn) in a persistent AVL tree using fat node method.

2.2 FULL PERSISTENCE

By using the same fat node structure, we can apply the fat node method to
obtain fully persistent AVL trees. Here, each fat node also contains the same fields
as an ephemeral node, as well as space for an arbitrary number of extra field
values to store tuples (field name, field value, version stamp) for update
operations.

2.2.1 VERSION TREE AND TOTAL VERSION LIST

Although the idea is the same, the difficulty is that the versions in a fully
persistent structure do not have a natural linear ordering like we have in the case
of partial persistence. Figure 1.1 (b) has already shown an example of version trees.

The lack of a linear ordering on versions makes navigation through a repre-
sentation of a fully persistent structure problematic. To eliminate this difficulty, we
impose a total ordering on the versions consistent with the partial ordering defined
by the version tree. We represent this ordering by a list of the versions in the
appropriate order. We call this the total version list of the structure. When a new
version, say i , is created, we insert i in the total version list immediately after its
parent (in the version tree). The resulting list defines a preorder on the version
tree. This implies that the total version list has the following crucial property: for

5



any version i , the descendants of i in the version tree occur in the total version
list from i , if i has any descendants.

In addition to performing insertions in the total version list, we need to be
able to determine, given two versions i and j , whether i comes before or after j
in the version list. We will use a order maintenance data structure proposed by
Dietz and Sleator[1] that supports order queries and insertion in O(1) worst-case
time.

2.2.2 SEARCHING AND UPDATING IN A FULLY PERSISTENT AVL TREE

With the total ordering of the versions we defined above, we can navigate
through the persistent AVL tree. But instead of comparing the versions with their
numeric values, now we look at their relative positions in the total version list.
Note that all fields in each node has a subset of the versions, and the ordering of
these versions is defined the same way as in total version list. We say the versions
of some field value in node x forms a version list. Basically, version lists are
subsequences of the total version list.

The extra steps for updating in fully persistent AVL trees comes from maintaining
the correct correspondence between the total version list and the version list of the
updated field.

1: iM 2: iC 3: iO 4: iP 5: dC

6: iA

Figure 2.2: A version tree. An "i" or "d" indicates an insertion or deletion of the
specified item. The total version list is (1, 2, 6, 3, 4, 5)

Now consider a sequence of update operations in Figure 2.2.

After 6 update operations, M.left contains version stamps 2 and 5 and its
version list is (2, 5). If we want to insert L on version 6, we need to store
(left, L, v7) in node M. The new total version list is (1, 2, 6, 7, 3, 4, 5)
and the new version list of M.left is (2, 7, 5).

The catch here is that if we want to search for the value of M.left in version
3, the closest version left to 3 in the version list is 7. So we will get L instead of
the correct value C. Therefore, we must store (left, C, v3) into node M as well.

For a general case, suppose we are at an update step of the update operation
i, and this update step modifies some field value of node x. Denote the version
list of x.field as (...,i1,i,i2,...) after insertion of i. That is, i1 is the

6



closest version left to i and i2 is the closest version right of i. Note that i1
might be equal to i and i2 might not exist. We also let the total version list be
(...,i1,...,i,i+,...,i2,...), i.e. i+ is the version after i, if such a version
exists.

As in the case of partial persistence, if i1 = i, we simply overwrite the field
value. If they are different, we store (field name, field value, version i) into
the fat node x. Now, if there exists a version i+ between i and i2 in the total
version list, we know in the version interval [i+, i2), the field value should be the
same as in version i1. However, if we search for the field value of x in this version
interval, we will get the value with version i. Therefore, in order to maintain the
correspondence of ordering between the total version list and the version list of
field, we need to store (field name, field value in i1, i+) into the node in
order to maintain the correct correspondence between the total version list and the
version list.

In the end we store the root pointer of version i into the balanced binary
search tree as well.

2.2.3 SPACE AND TIME ANALYSIS

Updating and accessing in the case of full persistence is the same as in partial
persistence. The only difference is the ordering we impose earlier, but with the
order maintenance data structure, we can do insertions and order queries in O(1).
When we want to find the closest version left to or equal with our query version
in the version list, we can do binary searching in the total version list. This is
done by comparing the relative positions of the middle version and the one of the
query version in the total version list, we can at least halve the total version list.
Therefore, it takes O(logm) per node as in normal binary search. It follows that
we have the same asymptotic efficiency as in the case of partial persistence.

3 NODE COPYING AND NODE SPLITTING

3.1 NODE COPYING FOR PARTIAL PERSISTENCE

Although the idea of the fat node method is rather intuitive, the fat nodes must
be represented by linked collections of fixed-size nodes in the implementation. We
eliminate this drawback with our second idea, node copying. With this method we
can obtain partial persistence with slowdown of amortized time O(1) per update
operation.

We allow nodes in the persistent structure to hold only a fixed number of
field values. When we run out of space in a node, we create a new copy of the
node, containing only the newest value of each field. After a node is copied, we

7



must also store the pointer to the new copy in the parent node. If there is no
space in the parent, we must copy the parent as well. The cascading effect can
be problematic for efficiency. However, if we assume that the underlying ephemeral
structure has nodes of constant bounded in-degree and we allow sufficient extra
space in each node of the persistent AVL tree, we can derive an O(1) amortized
bound on the number of nodes copied.

Before going into details, we need to clarify two terms we are going to use. We
call a node of the underlying ephemeral structure an ephemeral node and a node
of the persistent structure a persistent node.

The correspondence between the ephemeral structure and the persistent struc-
ture is as follows. Each ephemeral node corresponds to a set of persistent nodes,
called a family. We call the particular member in the family live if it represents
the latest version of the ephemeral node and all the other members dead. Each
version of the ephemeral node corresponds to one member of the family, although
several versions of the ephemeral node may correspond to the same member of
the family.

The persistent node structure contains all the fields an ephemeral node in an
AVL tree has, i.e. key, left, right, balance. In addition, we have one extra
field to store later updates. During an update operation i, if we need to store a
new field value into the node, and the extra field has been taken, we need to make
a new copy of this node. All the field values of this new copy are the same as the
old one except for the updated field. We then add (field name, field value,
version i) to the pointer(s) in the parent node and potentially other predecessor
nodes as well. However, since there is only one path from the root to any node,
and in an AVL tree the longest path is O(logn), we only need to copy O(logn)
new nodes per update operation. In order to achieve this complexity, we need to
store the path of visited nodes when we navigate through the tree, so that we can
update the pointers in predecessor nodes efficiently.

After an update operation, as in fat node method, we also need an auxiliary
structure to store root pointers in each version.

8



O O

M Q

3

3

2
1-2

3

3

4

4

4

Figure 3.1: An partially persistent AVL tree using node copying after insertions of
M ,O,Q, followed by the deletion of M . Pointers are labeled with their
version stamps. Red edges are right pointers and blue edges are left
pointers.

3.1.1 SPACE AND TIME ANALYSIS [2]

Before going into detailed analysis, remember that insertion in an array takes
amortized constant time because an expensive operation, for example, doubling the
array here, happens only once in a while and can make some future insertions
constant again. The reason that node copying can achieve better performance is
similar to this. A single extra field per node is already enough to let the slowdown
of an update operation be amortized constant.

We will use potential method here to derive an amortized bound.

Potential Method. [3][4]

Define a potential function Φ on states of a data structure with the following
properties:

• Φ(h0) = 0, where h0 is the initial state of the data structure.

• Φ(ht ) ≥ 0 for all states ht of the data structure occurring during the course of
the computation.

We then define the amortized cost of an operation as c+Φ(h′)−Φ(h), where c is
the actual cost of the operation and h and h′ are the states of the data structure
before and after the operation respectively.

Now consider a sequence of n operations taking actual time c0,c1, ...,cn −1 and
producing data structures h1,h2, ...,hn starting from h0. The total amortized time is

(c0 +Φ(h1)−Φ(h0))+ (c1 +Φ(h2)−Φ(h1))+ ...+ (cn−1 +Φ(hn)−Φ(hn−1))

= c0 + c1 + ...+ cn−1 +Φ(hn)

Since Φ(hn) is always non-negative by assumption, the amortized time is a valid
upper bound for all operations.

9



Using potential method, we will see an update operation takes O(1) amortized
space and O(1) amortized time. First, we define the potential function Φ(T ) as the
number of full live nodes in the persistent AVL tree. The full live nodes are the live
nodes whose extra field has been filled. Suppose an update operation generates k
copies, where we know k ≤ logn, plus a record written into an empty extra field (or
a new root added). Each of the k copies costs O(1) space and time, but decreases
the potential function by one. To see this, observe that each time a node is copied,
this node becomes dead and would not be counted in our potential function. In
addition, a new copied node with an empty extra field, i.e. with potential zero, is
created. Therefore, we have a negative potential change −k.

In the end, we will find a node with an empty extra field and stop cascading
of copying, or we copy the root. Either case we increase the potential by one.

Putting it all together, the change in potential is ∆Φ= 1−k. Thus, the amortized
space cost is O(k +∆Φ) =O(1) and the amortized time cost is O(k +∆Φ+1) =O(1).

As for searching, since the size of persistent node is constant, it only takes O(1)
to find the correct version in each node, since we only need to check a constant
number of fields per node. Overall the time is O(logn).

3.2 NODE SPLITTING FOR FULL PERSISTENCE

In order to achieve full persistence, we can use a variant of node copying
called node splitting. We also only allow the persistent nodes to hold only a
fixed number of field values, but this time we need more than one extra field in
the nodes of an persistent AVL tree. The major difference between node splitting
and node copying is that in the former, when a node overflows, a new copy is
created and roughly half the extra pointers are moved from the old copy to the
new one. This is because we can update on any versions in full persistence, and
therefore we should leave space in both the old node and the new copy for later
updates. However, the efficient implementation is more complicated than that of
node copying. Therefore, we are not going to discuss all the technical details here
in the report.

To sum up the results in the paper by Driscoll et al.[2], we can make a linked
data structure of constant bounded in-degree fully persistent with a multiplicative
factor of amortized time O(1) and space cost of O(1) per update step and a
multiplicative factor of O(1) time in the worst case per access, e.g. searching in
the AVL tree.

4 BEYOND AVL TREES

Although we use AVL trees as our example in this report, we point out that the
techniques we introduce here can be applied to any general linked structures. By

10



using a tree as the ephemeral data structure, we are actually granted to simplify
the structure of persistent nodes.

For example, if we think of a data structure that resembles DAG (of bounded
out-degree by the definition of linked structure), a node might have multiple
predecessors. In this case, if we use node copying or node splitting to obtain the
persistent data structure, we need to know which node in the family we should
update on. In addition, we need to update the pointers that point to the changed
node by introducing inverse pointers. We might also want to attach a version stamp
of the node to keep track of when the node is created. Finally, we should use a
singly linked list for a family to group all the members. These additional structures
can be omitted in trees because we only have one single access pointer, i.e. the
root pointer, and there is only one path to access any node in the tree, which
always starts from the root.

Note that the complications of the implementation for general linked structures
are only to maintain the correct correspondence between the ephemeral structure
and the persistent one. Once we understand the purpose, how to implement a
persistent data structure will become clear.

5 APPLICATIONS AND OPEN PROBLEMS[2]

When we discuss the node copying method, we restrict the ephemeral nodes
to have bounded in-degree in order to achieve efficiency. What remains to be
shown is whether we can find a way to keep the complexity of amortized O(1)
and dispensing with this restriction at the same time.

There are situations where the ability to access and modify past versions may
be necessary. We can by using node copying or node splitting method implement
partially or fully persistent stacks, queues, and deques with O(1) additional time
and space per operation. These data structures are used in computational geometry,
implementation of very high level languages, and text and file editing as we have
mentioned at the beginning.

We may also want to merge several versions into a new one. Data structures
that allow us to access, update, and merge old versions are called confluently
persistent data structures. Versions control systems like Git and SVN are examples
of applications of confluent persistence.

REFERENCES

[1] P. Dietz and D. Sleator, “Two algorithms for maintaining order in a list”, in
Proceedings of the nineteenth annual ACM symposium on Theory of computing,
ACM, 1987, pp. 365–372.

11



[2] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan, “Making data structures
persistent”, J. Comput. Syst. Sci., vol. 38, no. 1, pp. 86–124, Feb. 1989, ISSN:
0022-0000. DOI: 10.1016/0022-0000(89)90034-2. [Online]. Available: http:
//dx.doi.org/10.1016/0022-0000(89)90034-2.

[3] D. Glasser, 6.854 advanced algorithms, 2006. [Online]. Available: http : / /
courses.csail.mit.edu/6.854/06/scribe/s2-persistent.pdf.

[4] R. Zabih, Lecture 20: Amortized analysis, 2011. [Online]. Available: http://www.
cs.cornell.edu/courses/cs3110/2011fa/supplemental/lec20-amortized/
amortized.htm.

12


