
Project for 236331 (Fall 2021):

lower bound of the size of reduction sequences

in Feferman-Vaught theorem

Shengyu Huang

May 31, 2022

1 Introduction

Let τ be a fixed and finite relational vocabulary. We use FOL(τ) for the set of τ -
sentences in first-order logic and FOLq(τ) for sentences in FOL(τ) of quantifier
rank at most q ∈ N.

We define the size (or length) |φ| of a first-order formula φ as the number
of vertices of φ’s syntax tree. In this report, we will investigate the size of a
reduction sequence in a computational proof of Feferman-Vaught theorem [3] as
reproduced below.

Theorem 1.1. [5, Theorem 1.6] For two τ -structures A,B and a first-order
logic formula θ of quantifier rank q ∈ N, one can compute effectively a reduction
sequence and a boolean function Bθ : {0, 1}2m → {0, 1} to determine whether
A ⊔ B |= θ.

Specifically, a reduction sequence is a sequence of formulas of the form
⟨ψA

1 , ..., ψ
A
m, ψ

B
1 , ..., ψ

B
m⟩, where ψA

i , ψ
B
i ∈ FOLq(τ) for i ∈ {1, ...,m}.

For the boolean function Bθ, we have A ⊔ B |= θ iff Bθ(b
A
1 , ..., b

A
m, b

B
1 , ..., b

B
m) =

1, where bAj = 1 iff A |= ψA
j and bBj = 1 iff C |= ψB

j .

We show two ways of constructing a reduction sequence in this section, one
inductively and one using Hintikka sentences. We define the size of a reduction
sequence as the size of the biggest formula in the sequence. In Section 4, we
will derive a lower bound of the size of reduction sequences and show that
using Hintikka sentences to construct a reduction sequence, although a naive
approach, is the best we can do in some cases. In Section 3, we introduce a class
of finite trees, upon which the lower bound in Section 4 is derived. Because the
lower bound would be phrased in terms of elementary functions, we will in the
next section first introduce the definitions of primitive recursive functions and
elementary functions.

Constructing a reduction sequence inductively The proof of Theorem 1.1
given in [5] constructs a reduction sequence inductively. For an atomic formula

1



θ, a reduction sequence can be very short. Consider the same example in [5],
where we are given two ordered graphs G1 = (V1, E1, <1) and G2 = (V2, E2, <2).
The disjoint union G = (V,E,<) of G1 and G2 is the ordered sum of these two
graphs with V = V1⊔V2, E = E1⊔E2, and < = <1 ⊔ <2 ⊔(V1×V2). Since free
variables are involved in the inductive construction, we assume z : V ars → V
is an assignment of the free variables to the vertices.

If θ = E(u, v), then a reduction sequence is simply ⟨E1(u, v), E2(u, v)⟩ and
the boolean function is bG1

1 ∨ bG2
1 , where bG1

1 = 1 iff E1(u, v) holds and b
G2
1 = 1

iff E2(u, v) holds. With θ = E(u, v), only the cases where z(u) and z(v) are
both in V1 or V2 are relevant.

Constructing a reduction sequence using Hintikka sentences In class,
we adopted a more naive approach to prove Theorem 1.1 by using Hintikka
sentences. Since there are only finitely many Hintikka sentences of quantifier at
most q, we can enumerate them as {hq1, ..., hqα}. By Feferman-Vaught theorem,
there is a function g : [α]2 → [α] such thatA |= hqi and B |= hqj iffA⊔B |= hqg(i,j).

If θ is a Hintikka sentence hqk for A ⊔ B, a reduction sequence for θ can be
given by combining two sequences:

(hqi (A) : A |= hqi and ∃jg(i, j) = k) and (hqj(B) : B |= hqj and ∃ig(i, j) = k).

The boolean function Bθ is∨
(i,j)∈Fk

(hqi (A) ∧ hqj(B)), whereFk = {(i, j) ∈ [α]2 : g(i, j) = k}.

If θ is not a Hintikka sentence, it can be written as a disjunction of Hintikka
sentences

∨
i,hq

i→θ h
q
i . We can then proceed by having a reduction sequence for

each hqi and piece all reduction sequences together.

2 Primitive recursive and elementary functions

In the following text, we denote 0 the zero function, i.e, 0(x) = 0 for all x, and
Un
i (1 ≤ i ≤ n) the projection function, where Un

i (x1, x2, ..., xn) = xi.

Definition 2.1 (Primitive recursive function). The class primitive recursive
functions is the smallest class of functions that includes 0, the successor function
x+ 1, Un

i and is closed under substitution and recursion.

There are nevertheless recursive (or equivalently, total computable) functions
that are not primitive recursive. One famous example is the Ackerman function.
One version of Ackerman function is defined as

A(0, n) = n+ 1

A(m+ 1, 0) = A(m, 1)

A(m+ 1, n+ 1) = A(m,A(m+ 1, n)).

2



An important subclass of primitive recursive functions is the class of ele-
mentary functions. Roughly speaking, elementary functions can be obtained by
iteration of the operations of ordinary arithmetic. We define it as follows.

Definition 2.2 (Elementary function). The class of elementary functions is the
smallest class such that it includes x + 1, Un

i , x − y, x + y, xy and is closed
under substitution and the operations of forming bounded sums and bounded
products. Specifically, if f(x⃗, z) is an elementary function, then

∑
z<y f(x⃗, z)

and
∏

z<y f(x⃗, z) are also elementary, where

∑
z<y

f(x⃗, z) =

{
0 y = 0∑

z<y−1 f(x⃗, z) + f(x⃗, y) otherwise
(1)

and∏
z<y

f(x⃗, z) =

{
1 y = 0∏

z<y−1 f(x⃗, z) · f(x⃗, y) otherwise
(2)

Definition 2.3 (Tower function). For x, y ∈ N,

Tower(x, y) =

{
y x = 0

2Tower(x−1,y) otherwise
(3)

For succinctness, we abbreviate Tower(x, 1) as Tower(x) for now on.

Theorem 2.1. If f(x⃗) is elementary, there is a number k such that for all x,
f(x⃗) ≤ Tower(k,max(x⃗)), where max(x⃗) is the same as the L-infinity norm of
x⃗.

Theorem 2.1 can be proved by induction. We skip the proof here for brevity.
The reader can seek [1, Chapter 12, Theorem 4.7] for a detailed proof.

Theorem 2.2. The function f(x) := Tower(x, x) is primitive recursive but not
elementary.

Proof. Tower(x, x) is obviously a primitive recursive function. To see that f is
not elementary, notice that f(k+1) = Tower(k+1, k+1) > Tower(k, k+1) for
every k. Therefore, there is no k such that f(x) ≤ Tower(k, x) for all x.

3 Encoding numbers by trees

Encoding numbers by trees gives us some small first-order formulas that will
come in handy for the proof in Section 4. In this section, we will develop several
first-order logic formulas that are satisfied iff a tree is indeed a valid encoding
of some natural number or the number encoded by the tree has some intuitive
properties.

For every number n ∈ N, we define a tree T (n) as follows.

3



• T (0) is the node-node tree.

• For n ≥ 1 the tree T (n) is obtained by creating a new root and attaching
it to every tree T (i) such that the i-th bit in the binary representation of
n is 1.

Recall that the height of a tree T (n) is the length of the longest path in
T (n). Observe that we can encode numbers as big as Tower(h) with a tree of
height at most h. In fact, the other way is also true, i.e., if the height of a tree
T (n) is at most h, n must be less than or equal to Tower(h).

Lemma 3.1. [4, Lemma 10.20] For all h, n ≥ 0, height(T (n)) ≤ h ⇐⇒ n ≤
Tower(h).

We now introduce three first-order formulas encodingh(x), succh(x, y), and
maxh(x) that describe the properties of the tree structures defined above.

In the following text, we use E to denote a binary relation symbol and view
trees as being directed from the root to leafs. For a directed graph A = (A,EA)
and an a ∈ A, we use Aa to be the set of all vertices b such that there is a path
from a to b. Aa is the induced substructure of A with universe Aa. Note that
there is always a path from a node to itself.

Intuitively, encodingh(x) holds, if a tree with x as its root is a valid encoding
of some number n < Tower(h). By Lemma 3.1, it also implies that such a tree
has a height strictly less than h. The meanings for succh(x, y) and maxh(x)
are self-explanatory, and we will give their formal definitions in Lemma 3.4 and
Lemma 3.3, respectively.

Lemma 3.2. For all structures A = (A,EA) and x ∈ A there is a first-
order formula encodingh(x) of length O(h2) for every h ≥ 0 such that A |=
encodingh(x) iff Ax is isomorphic to T (i) for some i ∈ {0, ...,Tower(h)− 1}.

Proof. For an arbitrary structureA = (A,EA) and x ∈ A, we define encodingh(x)
inductively as follows.

When h = 0, Tower(h) = 1. We want A |= encoding0(x) iff Ax is isomorphic
to T (0). Since T (0) is the one-node tree, we can simply choose encoding0(x) :=
¬∃yE(x, y).

For h ≥ 1, we define encodingh(x) := ∀y
(
E(x, y) → encodingh−1(y)

)
∧

∀y∀y′
(
(E(x, y) ∧ E(x, y′) ∧ ¬y = y′) → ¬eqh−1(y, y

′)
)
.

We introduce eqh−1(y, y
′) to express the notion of equality. Formally, for

every structures A = (A,EA) and x, y ∈ A if there are m,n < Tower(h) such
that Ax and Ay are isomorphic to T (m) and T (n), respectively, then A |=
eqh(x, y) ⇐⇒ m = n. In addition, the length of eqh(x, y) is O(h) for every
h ≥ 1 [4, Lemma 10.21].

Based on the definition of encodingh(x), we know there exists a constant
c > 0 such that |encodingh| ≤ |encodingh−1|+|eqh−1|+c. Solving this recurrence
equation gives us

|encodingh| ≤ |encoding0|+
h−1∑
i=0

|eqi|+ c · h = O(h2).

4



In a similar way, we can show the existence of succh(x, y) and maxh(x)
and derive the upper bound for their formula lengths. We refer readers to the
original paper [3] for more detailed proofs.

Lemma 3.3. [2, Lemma 3.4] For all structures A = (A,EA) and x, y ∈ A
there is a first-order formula succh(x, y) of size O(h3) for every h ≥ 0 such that
A |= succh(x, y) iff m + 1 = n, where m,n < Tower(h) and Ax and Ay are
isomorphic to T (m) and T (n), respectively.

Lemma 3.4. [2, Lemma 3.4] For all structures A = (A,EA) and x ∈ A there
is a first-order formula maxh(x) of size O(h4) for every h ≥ 0 such that A |=
maxh(x) iff Ax is isomorphic to T (Tower(h)− 1).

4 Size of reduction sequences in Feferman-Vaught
theorem

Recall that FOL(τ) denote the set of τ -sentences in first-order logic and FOLq(τ)
denote the sentences of quantifier rank at most q ∈ N in FOL(τ). For a class
of τ -structures K, let Th(K) be the set of sentences in FOL(τ) that are true in
all U ∈ K. We write Th(U) if K = {U}. Similarly to FOLq(τ), we use Thq(U)
to denote the sentences in Th(U) of quantifier rank at most q. Additionally,
sentences in Th(U) that are of length at most l are written as Thl(U).

For two structures A and B, constructing a reduction sequence for θ of
quantifier rank at most q ∈ N requires us to look at sentences in Thq(A) and
Thq(B). Since there are only finitely many Hintikka sentences of quantifier rank
q, it follows that there is a function f such that we can construct the reduction
sequence for θ using formulas in Thf(|θ|)(A) and Thf(|θ|)(B).

In Section 1’s Theorem 1.1, we used Hintikka sentences to construct a re-
duction sequence for a formula θ of length n. This makes f(n) = O(Tower(n)),
but maybe surprisingly, this upper bound is essentially tight for some cases.
Specifically, the size of a reduction sequence for a formula θ is not bounded by
any elementary function. By Theorem 2.1, it means f(|θ|) is not bounded by
O(Tower(k)) for any fixed k.

Theorem 4.1. [2, Theorem 6.1] Let T denote the class of all finite trees. There
is no elementary function f such that the following holds for all trees A,B, C ∈ T
and n ≥ 1: if Thf(n)(A) = Thf(n)(B), then Thn(A ⊔ C) = Thn(B ⊔ C).

Proof. Assume f elementary for contradiction. For some h ∈ N, we will give a
first-order formula φh and A,B, C ∈ T such that A ⊔ C |= φh and B ⊔ C ̸|= φh

while Thf(|φh|)(A) = Thf(|φh|)(B).
Specifically,

φh := ∀x
(
encodingh(x) →

(
maxh(x) ∨ ∃y succh(x, y)

))
.

5



Intuitively, φh says for all nodes x in a finite tree structure A with a height
strictly less than h, if Ax is a valid coding of some number n ∈ {0, ...,Tower(h)−
1}, Ax either encodes the largest number, i.e., Tower(h) − 1 (c.f. Lemma 3.4
and Lemma 3.1), or there exists some y ∈ A such that the number encoded by
Ay is the successor of the number encoded by Ax.

Directly following from Lemma 3.2, Lemma 3.3, and Lemma 3.4, |φh| ≤ c·h4
for some c ≥ 1 and for all h ≥ 0. We fix an h such that |Thf(|φh|)(T)| ≤
Tower(h)−1. Since there are only exponentially many first-order sentences of a
given length and f is bounded by Tower(k) for some k ∈ N (c.f. Theorem 2.1),
we are assured to find such an h.

Construction of A,B ∈ T such that Thf(|φh|)(A) = Thf(|φh|)(B) We con-
tinue to use T (j) to denote a finite tree that encodes the natural number j ∈ N
as introduced in Section 3.

In order to find two finite tree structures A,B that satisfy the same sen-
tences of length up to f(|φh|), first we construct a set of structures F :=⋃Tower(h)−1

i=0 Fi, where Fi := {T (j) | i ≤ j ≤ Tower(h) − 1} for 0 ≤ i ≤
Tower(h) − 1. Next, we construct a set of new trees U :=

⋃Tower(h)−1
i=0 Ui,

where Ui connects a new root to all the roots of trees in Fi.
Since |U| = Tower(h) and |Thf(φh|)(T)| ≤ Tower(h) − 1, by pigeonhole

principle, there are two numbers a, b with 0 ≤ a < b ≤ Tower(h) − 1 such that
Thf(|φh|)(Ua) = Thf(|φh|)(Ub). In other words, A = Ua and B = Ub.

Find a C ∈ T such that A ⊔ C |= φh and B ⊔ C ̸|= φh We simply set
C = T (a− 1) and show that Ua ⊔ T (a− 1) |= φh and Ub ⊔ T (a− 1) ̸|= φh.

To see Ua ⊔T (a− 1) |= φh, we first check the root of Ua and then rest of the
nodes. Because T (Tower(h) − 1) ∈ Fa, the root of Ua now encodes a number
bigger than Tower(h) − 1 and hence the root cannot satisfy encodingh(x). In
other words, the root of Ua satisfies encodingh(x) →

(
maxh(x)∨∃y succh(x, y)

)
.

The rest of the nodes in Ua are nodes in Fa. Observe that φh holds for every Fi

with i ∈ {0, ...,Tower(h)−1}. Since Fa⊔T (a−1) = Fa−1, Fa⊔T (a−1) |= φh.
Overall, Ua ⊔ T (a− 1) |= φh

To see Ub⊔T (a−1) ̸|= φh, notice that the root of T (a−1) encodes a number
strictly less than the maximum Tower(h)− 1. In addition, there does not exist
a subtree isomorphic to T (a) in Ub ⊔ T (a − 1). Hence, the root of T (a − 1) in
Ub ⊔ T (a− 1) not does satisfy φh.

Wrap-up We have shown Ua ⊔ T (a − 1) |= φh and Ub ⊔ T (a − 1) ̸|= φh.
Namely, Th|φh|(Ua ⊔ T (a− 1)) ̸= Th|φh|(Ub ⊔ T (a− 1)), while Thf(|φh|)(Ua) =
Thf(|φh|)(Ub). Therefore, the assumption that f is elementary cannot hold.

6



References

[1] Nigel Cutland, Computability: An introduction to recursive function theory,
Cambridge university press, 1980.

[2] Anuj Dawar, Martin Grohe, Stephan Kreutzer, and Nicole Schweikardt,
Model theory makes formulas large, International Colloquium on Automata,
Languages, and Programming, Springer, 2007, pp. 913–924.

[3] Solomon Feferman and Robert L Vaught, The first order properties of prod-
ucts of algebraic systems, Journal of Symbolic Logic 32 (1967), no. 2.

[4] Jörg Flum and Martin Grohe, Parameterized complexity theory, Springer,
2006.

[5] Johann A Makowsky, Algorithmic uses of the feferman–vaught theorem, An-
nals of Pure and Applied Logic 126 (2004), no. 1-3, 159–213.

7


